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You and |
Myself: You:

1. researcher at CEA on formal 1. M2 SETI master students;
methods for software safety 2. future practitionners of Al
and security applied to systems: designer, developers,
machine learning; debuggers;

2. working on case-based 3. informed citizens;

reasoning and
out-of-distribution detection in

industrial use cases;
3. informed citizen;
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Hands on TP

1. https://git.frama-c.com/pub/seti_master/-/
archive/xai_tp/seti_master-xai_tp.zip

2. bash setup.sh
3. wait some time

4. bash launch.sh

This will download the required python environment and several other

dependencies
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Definitions

Explanation

“An explanation is a presentation of (aspects of) the reasoning, function-
ing and/or behavior of a machine learning model in human-understandable

terms” [Nau+23]
“The belief (by the trustor) in the ability (of the trustee) to achieve some-

thing”
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Explanation is a spectrum

Social science have quite a big corpus on what constitutes a good
explanation ([Mil19])?

1. contrastive: why P instead of Q?
2. a social process: A explains P to B

3. more generic (cover more facts), simpler (quote less causes), and coherent
(related to previous knowledge) are more easily understood
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Why it matters

1. debugging and audit
2. refutability
3. compliance with regulation (GDPR article 13.f [SP17])
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Notations

1. samples x €  C R? an input space, i" feature x;
2. anoutput y € % C R?, the it" feature Y
3. aprogram f : &+ % trainedona X
« we can usually decompose f =ho g
« in the following, h(x) is the output of an intermediate layer for neural network

4. V,(y) is the gradient of yat x
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Framework of feature attribution

"most significant feature:
beak"

inable by design programs

8/19



Post-hoc explanations
00080000

Some caveats

inable by design programs

1. gradient based approaches may not capture variations
« given f(x) =1 —ReLu(1 — x), V, fand V, f have the same value

2. strong, local variations without any regularization scheme
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Smoothgrad

SMOOTHGRAD [Smi+17] V,+(y) where x™ is a gaussian neighborhood of x

Vo) = = Y Vafx + #(0,0)
0
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Integrated gradients

Gradient on the line between x and a baseline image x [STY17]

1
IG; = (x; — x{)J inf(x' + a(x — x))da
o=0

usually computed using Riemann approaches

m
’ ’ ’ 1
IG; = (5= %) Y, Vi S + o= x ) x
k=0 mn
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Original image Top label and score Integrated gradients Gradients at image

Top label: reflex camera
Score: 0.993755

Top label: fireboat
Score: 0.999961

Top label: school bus
Score: 0.997033
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Wrapping up: empirical feature attribution approaches

1. usually only require gradient computation access;

2. provide attributions on the input space, but no direct exposition of the
underlying decision process;

3. brittle, require sanity checks[Ade+18];
4. heavily rely on the program internal representation;

5. no validity domain;
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Decision trees

Survival of passengers on the Titanic

gender
male female
age survived
073; 36%
95<age age<=95
died =
047, 61% B2

/ \
3<=sibsp sibsp<3

 died survived
002 2% 089, 2%

from Wikipediahttps://en.wikipedia.org/wiki/Decision_tree_learning/

Issue: the deeper the tree, the less amenable it is to understand its decision
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S(Mx), pp) = 08
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Protoype based approaches - ProtoTrees

1. learn “prototypes” p: part of the input set that are deemed representative

for the prediction;

2. during inference, M;(x) are compared to p; using a similarity layer S;
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Protoype based approaches - Tackling tree complexity

ProtoTree have two hyperparameters that influence the decision tree:

1. the decision tree depth;
2. the pruning threshold;
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Prototype based approaches - Caveat

1. Still rely on the hypothesis that similarity in the feature space equals
similarity in the input space;

2. Need retraining models;
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