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You and I

Myself:

1. researcher at CEA on formal
methods for software safety
and security applied to
machine learning;

2. working on case-based
reasoning and
out-of-distribution detection in
industrial use cases;

3. informed citizen;

You:

1. M2 SETI master students;

2. future practitionners of AI
systems: designer, developers,
debuggers;

3. informed citizens;
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Hands on TP

1. https://git.frama-c.com/pub/seti_master/-/
archive/xai_tp/seti_master-xai_tp.zip

2. bash setup.sh

3. wait some time

4. bash launch.sh

This will download the required python environment and several other
dependencies

3 / 19

https://git.frama-c.com/pub/seti_master/-/archive/xai_tp/seti_master-xai_tp.zip
https://git.frama-c.com/pub/seti_master/-/archive/xai_tp/seti_master-xai_tp.zip


Preliminaries Post-hoc explanations Explanable by design programs

Definitions

Explanation

“An explanation is a presentation of (aspects of) the reasoning, function-
ing and/or behavior of a machine learning model in human-understandable
terms” [Nau+23]
“The belief (by the trustor) in the ability (of the trustee) to achieve some-
thing”
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Explanation is a spectrum

Social science have quite a big corpus on what constitutes a good
explanation ([Mil19])?

1. contrastive: why P instead of Q?

2. a social process: A explains P to B

3. more generic (cover more facts), simpler (quote less causes), and coherent
(related to previous knowledge) are more easily understood
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Why it matters

1. debugging and audit

2. refutability

3. compliance with regulation (GDPR article 13.f [SP17])
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Notations

1. samples 𝑥 ∈ 𝒳 ⊆ ℝ𝑑 an input space, i𝑡ℎ feature 𝑥𝑖
2. an output 𝑦 ∈ 𝒴 ⊆ ℝ𝑝, the i𝑡ℎ feature 𝑦𝑖
3. a program 𝑓 ∶ 𝒳 ↦ 𝒴 trained on a 𝒳

• we can usually decompose 𝑓 = ℎ ∘ 𝑔
• in the following, ℎ(𝑥) is the output of an intermediate layer for neural network

4. ∇𝑥(𝑦) is the gradient of 𝑦 at 𝑥
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Framework of feature attribution

core idea: computing ∇𝑥𝑦, identify the most relevant outputs on 𝒴 and project
back on 𝒳
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Some caveats

1. gradient based approaches may not capture variations

• given 𝑓 (𝑥) = 1 − R𝑒L𝑢(1 − 𝑥), ∇0𝑓 and ∇2𝑓 have the same value

2. strong, local variations without any regularization scheme

9 / 19



Preliminaries Post-hoc explanations Explanable by design programs

Smoothgrad

SMOOTHGRAD [Smi+17] ∇𝑥∗(𝑦) where 𝑥∗ is a gaussian neighborhood of 𝑥

∇𝑥∗(𝑦) ≈
1
𝑛

𝑛
∑
0
∇𝑥𝑓 (𝑥 + 𝒩 (0, σ))
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Integrated gradients

Gradient on the line between 𝑥 and a baseline image 𝑥
′
[STY17]

IG𝑖 = (𝑥𝑖 − 𝑥
′
𝑖 ) ∫

1

α=0
∇𝑥𝑖𝑓 (𝑥

′
+ α(𝑥 − 𝑥

′
))𝑑α

usually computed using Riemann approaches

IG𝑖 ≈ (𝑥𝑖 − 𝑥
′
𝑖 )

𝑚
∑
𝑘=0

∇𝑥𝑖𝑓 (𝑥
′
+ 𝑚

𝑘
(𝑥 − 𝑥

′
)) ∗ 1

𝑚
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Integrated gradients
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Wrapping up: empirical feature attribution approaches

1. usually only require gradient computation access;

2. provide attributions on the input space, but no direct exposition of the
underlying decision process;

3. brittle, require sanity checks[Ade+18];

4. heavily rely on the program internal representation;

5. no validity domain;
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Decision trees

from Wikipedia https://en.wikipedia.org/wiki/Decision_tree_learning/

Issue: the deeper the tree, the less amenable it is to understand its decision
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Protoype based approaches - ProtoTrees
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Protoype based approaches - ProtoTrees

1. learn “prototypes” 𝑝: part of the input set that are deemed representative
for the prediction;

2. during inference, M𝑖(𝑥) are compared to 𝑝𝑖 using a similarity layer S;
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Protoype based approaches - Tackling tree complexity

ProtoTree have two hyperparameters that influence the decision tree:

1. the decision tree depth;

2. the pruning threshold;
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Prototype based approaches - Caveat

1. Still rely on the hypothesis that similarity in the feature space equals
similarity in the input space;

2. Need retraining models;
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