Formal verification of robustness properties in deep learning programs

Julien Girard-Satabin (CEA LIST), Guillaume Charpiat (INRIA TAU), Zakaria Chihani (CEA LIST), Marc Schoenauer (INRIA TAU)

10 février 2020

Formalizing robustness

Enforcing formal robustness for deep learning programs

Research tracks

Formalizing robustness

Classical robustness definition

IEEE Std 610.12-1990 : "The degree to which a system or component can function correctly in the presence of invalid inputs or stressful environmental conditions"

Some examples :

- Sensor noise in embedded systems
- Unvoluntary faulty inputs by the user (unsanitized inputs)

(Oversimplified) classical robustness enforcement process

- 1. Modeling of environment and faults
- 2. Various analysis (formal methods, tests) on software to identify sensible failure points
- 3. Workarounds implementation, redundancy and diversity (multiple functionally similar systems but dissimilar technically), better coding practices, etc.

Neural networks are really specific programs

- 1. Computer Vision, Natural Language Processing work on highly dimensional, unstructured data
 - \Rightarrow environment modelling difficult and scalability issues
- 2. Feedforward neural networks are functionally simple (no loops), but variables are meaningless by themselves
 - \Rightarrow current analysis practices not useful
- 3. Some very specific failure modes, difficult to spot and even more to fix \Rightarrow faults analysis and correction is impossible for now

Research tracks

What are adversarial examples?

Video for visual adversarial examples (Synthesizing Robust Adversarial Examples, Athalye et al., 2017)

Video for audio adversarial examples (Audio Adversarial Examples: Targeted Attacks on Speech-to-Text, Nicholas Carlini, 2018)

Why are adversarial examples important?

Adversarial examples :

• are transferable (Papernot et al., 2016, Transferability in Machine Learning..., Carlini et al. papers)

• not well understood (Adversarial Spheres, Goodfellow et al. 2018, Adversarial Examples are not bugs, they are features, Madry et al., 2018)

Research tracks

How to build them

Robustness problem formulation

A trained network $f : \mathcal{D}_x \to \mathcal{D}_y$

Set of input constraint $\mathcal{X} \in \mathcal{D}_{x}$

Set of output constraint $\mathcal{Y} \in \mathcal{D}_y$

Verification problem : $x \in \mathcal{X} \Rightarrow f(x) \in \mathcal{Y}$

Problem instanciation for adversarial examples

$$\mathcal{X} = \left\{ x : \|x - x_0\|_p < \varepsilon \right\}$$
$$\mathcal{Y} = \left\{ y_i : y_i > y_j, \forall j \neq i \right\}$$

For all perturbations of a sample under a given threshold (*threat model*) Classification stays unchanged

Limitations and issues

- 1. Verification problem is usually intractable as it is
- 2. Adversarial robustness is only relevant to one specific sample (no general characterization for all images)

Formalizing robustness

Research tracks

First approach : testing...

Testing suite are a common and useful tool in most of software development to find and get rid of bugs, sometimes automatically.

... is not enough

"Program testing can be a very effective way to show the presence of bugs, but it is hopelessly inadequate for showing their absence." (E. Djikstra, 1972).

- Remember our goal : have some guarantees on *domains*. Perceptual input spaces is huge and tests cannot cover all possible points.
- Other tools are necessary : formal methods : soundly compute domains of variables to provide mathematical guarantees

Research tracks

Common benchmarks

Adversarial robustness on CIFAR-10 using ConvNets

perturbation : l_{∞} perturbations with $\varepsilon = 2/255$ metric : robustness bounds : how many samples in the test set are certified robust ?

ACAS-XII

metric : time to check difficult properties $(\phi_5 \text{ and } \phi_{10} \text{ from Katz et al., 2017})$

Research tracks

Propagation-based algorithms

	DiffAI/DeepZ ¹	CNNCert ²	Symbolic propagation ³
Scalability	75s/batch, 16M params	432s/net, 76k params	780s/net, MLP
Completeness	×	×	×
Example results	41% lb	0.0024 certified $arepsilon_\infty$	safe under $\left\ x ight\ _{\infty} \leq 1$

 $\begin{tabular}{ll} Table 1-{\sf Recap} \ for \ propagation-based \ algorithms \end{tabular}$

- 1. Mirman et al., 2018; Singh et al., 2019
- 2. Boopathy et al., 2018
- 3. Xiang et al., 2017

Optimization/refinement-based algorithms

Base idea : reformulate the problem as an easier optimization problem, compute bounds by solving it

- MILP precompute bounds
- approximated bounds using a dual problem formulation

	MILP ⁴	Dual problem ⁵
Scalability	timed out ACAS ϕ_{10}	proved ACAS ϕ_{10} in 0.003 s
Completeness	\checkmark	×
Example results	lu 49%, ub 50.2% robustness bounds	ub 53.59% robustness bounds

Table 2 – Recap for refinement-optimization algorithms

4. Tjeng et al., 2017

5. Wong et al., 2017

Enforcing formal robustness for deep learning programs oooooooooooo

Research tracks

Search-based algorithms

Base idea : find a counterexample of the property in the search space

Some algorithms

- 1. ReLuPlex modifies a simplex algorithm to lazily evaluate ReLus
- 2. Marabou simplifies the network structure
- 3. ReLUVal search and is guided by symbolic intervals propagation
- 4. Sherlock uses search using gradient descent augmented with MILP

	ReLuPlex/Marabou ⁶	ReLUVal ⁷	Sherlock ⁸	
Scalability	ϕ_{5} : 19500s, ϕ_{10} : 2952s	ϕ_{5} : 216s	Timed out 24h	
Completeness	✓ (Marabou : ¥)	×	×	
		Sound global		
Example results	Sound global robustness	robustness	Output ranges	
	properties, safe subspaces	properties,	for control NN	
	identified	adversarial		
		examples found		

 Table 3 – Recap for search-based algorithms

6. Katz et al., 2019

7. Xiang et al., 2018

8. Dutta et al., 2017

Research tracks

Formally verifying perception

- All adversarial robustness properties are local
- Other work on controllers networks are more global (see Katz. et al.)
- Is there a way to check global properties on perceptual space?

Research tracks

Dream property ϕ : the autonomous car never run over pedestrians

Dream property ϕ : the autonomous car never run over pedestrians

no formal characterization of what a pedestrian is !

Dream property ϕ : the autonomous car never run over pedestrians

no formal characterization of what a pedestrian is !

Lack of formal definition on inputs prevents from formulating interesting safety properties

Introducing CAMUS : using simulators to derive a specification

Two main contributions

- 1. A framwork to express links between simulators and prediction objectives
- 2. A compiler from ONNX to SMTLIB2

Paper accepted at ECAI 2020 (Girard-Satabin, Julien et al. : *CAMUS : A Framework to Build Formal Specifications for Deep Perception Systems Using Simulators*)

Research tracks

Simulators as data providers

- *s* : parameters (obstacles, weather conditions...)
- g : simulator

- *f* : model
- y : decision output (brake...)
- *φ* : "∀ × that contains a pedestrian, do not roll over it"

 with a pedestrian?

• x : perceptual input (images) not roll over it How to formulate ϕ ? What is an image x with a pedestrian?

Research tracks

Reformulation of our verification problem

Modify the verification problem formulation to include g and s

 ϕ now encompasses s and can now be expressed : For all values of s that are translated by g as the presence of pedestrians into x, do not run over those pedestrians

Research tracks

Reformulation of our verification problem

Modify the verification problem formulation to include g and s

 ϕ now encompasses s and can now be expressed : For all values of s that are translated by g as the presence of pedestrians into x, do not run over those pedestrians

We now have a property to verify a perceptive unit !

Research tracks

Refinement : splitting perception and reasoning

f splits in perception and reasoning, p learns s

 ϕ_1 on p : guarantee of no information loss : reconstruct s from x $s^{'}=s \; \forall \; s \to p \circ g = \textit{Id}$

 ϕ_2 on r: do not kill pedestrians (assuming perfect perception)

Research tracks

Refinement : splitting perception and reasoning

f splits in perception and reasoning, p learns s

 ϕ_1 on p : guarantee of controlled information loss : reconstruct s from x s $^{'} \simeq s \; \forall \; s \rightarrow p \circ ||g - id < \varepsilon||$

 ϕ_2 on r: do not kill pedestrians (assuming perfect perception)

Research tracks

Express nets under our formalism

Compiler from onnx to logical formulaes (soon open source!)

Future work

- 1. Sound and complete robustness checking algorithm (scalability is key)
- 2. Enlarge CAMUS framework to express simulators more efficiently
- 3. Manage more network architectures and operators
- 4. Properties expression engine
- 5. Multiple output targets to improve versatility
- 6. Others we may not have thought of yet...

Final words

Enforcing formal robustness for deep learning programs

Research tracks

Thank you for listening, don't hesitate to shoot your questions :)

