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Classical robustness definition

IEEE Std 610.12-1990 : "The degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environmental conditions"

Some examples :

• Sensor noise in embedded systems

• Unvoluntary faulty inputs by the user (unsanitized inputs)

Formal verification of deep learning
10 février 2020

3 / 30



Formalizing robustness Enforcing formal robustness for deep learning programs Research tracks

(Oversimplified) classical robustness enforcement process

1. Modeling of environment and faults

2. Various analysis (formal methods, tests) on software to identify sensible failure
points

3. Workarounds implementation, redundancy and diversity (multiple functionally
similar systems but dissimilar technically), better coding practices, etc.
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Neural networks are really specific programs

1. Computer Vision, Natural Language Processing work on highly dimensional,
unstructured data
⇒ environment modelling difficult and scalability issues

2. Feedforward neural networks are functionally simple (no loops), but variables are
meaningless by themselves
⇒ current analysis practices not useful

3. Some very specific failure modes, difficult to spot and even more to fix
⇒ faults analysis and correction is impossible for now
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What are adversarial examples ?

Video for visual adversarial examples (Synthesizing Robust Adversarial Examples,
Athalye et al., 2017)

Video for audio adversarial examples (Audio Adversarial Examples: Targeted Attacks on
Speech-to-Text, Nicholas Carlini, 2018)
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Why are adversarial examples important ?

Adversarial examples :

• are transferable (Papernot et al., 2016, Transferability in Machine Learning. . .,
Carlini et al. papers)

δ

3 3

• not well understood (Adversarial Spheres, Goodfellow et al. 2018, Adversarial
Examples are not bugs, they are features, Madry et al., 2018)
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How to build them
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Robustness problem formulation

A trained network f : Dx → Dy

Set of input constraint X ∈ Dx

Set of output constraint Y ∈ Dy

Verification problem : x ∈ X ⇒ f (x) ∈ Y
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Problem instanciation for adversarial examples

X =
{
x : ‖x − x0‖p < ε

}
Y = {yi : yi > yj , ∀j 6= i}

For all perturbations of a sample under a given threshold (threat model)
Classification stays unchanged
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Limitations and issues

1. Verification problem is usually intractable as it is

2. Adversarial robustness is only relevant to one specific sample (no general
characterization for all images)
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First approach : testing. . .

Testing suite are a common and useful tool in most of software development to find
and get rid of bugs, sometimes automatically.
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. . . is not enough

“Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.” (E. Djikstra, 1972).

• Remember our goal : have some guarantees on domains. Perceptual input spaces is
huge and tests cannot cover all possible points.

• Other tools are necessary : formal methods : soundly compute domains of variables
to provide mathematical guarantees
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Common benchmarks

Adversarial robustness on CIFAR-10
using ConvNets

perturbation : l∞ perturbations with
ε = 2/255

metric : robustness bounds : how many
samples in the test set are certified

robust ?

ACAS-Xu

metric : time to check difficult
properties

(φ5 and φ10 from Katz et al., 2017)
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Propagation-based algorithms
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DiffAI/DeepZ 1 CNNCert 2 Symbolic
propagation 3

Scalability
75s/batch, 16M

params
432s/net, 76k params 780s/net, MLP

Completeness 7 7 7

Example results 41% lb 0.0024 certified ε∞ safe under ‖x‖∞ ≤ 1

Table 1 – Recap for propagation-based algorithms

1. Mirman et al., 2018 ; Singh et al., 2019
2. Boopathy et al., 2018
3. Xiang et al., 2017
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Optimization/refinement-based algorithms

Base idea : reformulate the problem as an easier optimization problem, compute bounds
by solving it

• MILP precompute bounds

• approximated bounds using a dual problem formulation
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MILP 4 Dual problem 5

Scalability timed out ACAS φ10 proved ACAS φ10 in 0.003 s
Completeness 3 7

Example results
lu 49%, ub 50.2%
robustness bounds

ub 53.59% robustness
bounds

Table 2 – Recap for refinement-optimization algorithms

4. Tjeng et al., 2017
5. Wong et al., 2017
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Search-based algorithms

Base idea : find a counterexample of the property in the search space
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Some algorithms

1. ReLuPlex modifies a simplex algorithm to lazily evaluate ReLus

2. Marabou simplifies the network structure

3. ReLUVal search and is guided by symbolic intervals propagation

4. Sherlock uses search using gradient descent augmented with MILP
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ReLuPlex/Marabou 6 ReLUVal 7 Sherlock 8

Scalability φ5 : 19500s, φ10 : 2952s φ5 : 216s Timed out 24h
Completeness 3 (Marabou : 7) 7 7

Example results
Sound global robustness
properties, safe subspaces

identified

Sound global
robustness
properties,
adversarial

examples found

Output ranges
for control NN

Table 3 – Recap for search-based algorithms

6. Katz et al., 2019
7. Xiang et al., 2018
8. Dutta et al., 2017
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Formally verifying perception

• All adversarial robustness properties are local

• Other work on controllers networks are more global (see Katz. et al.)

• Is there a way to check global properties on perceptual space ?
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Dream property φ : the autonomous car never run over pedestrians

no formal characterization of what a pedestrian is !

Lack of formal definition on inputs prevents from formulating interesting safety
properties
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Introducing CAMUS : using simulators to derive a specification

Two main contributions

1. A framwork to express links between simulators and prediction objectives

2. A compiler from ONNX to SMTLIB2

Paper accepted at ECAI 2020 (Girard-Satabin, Julien et al. : CAMUS : A Framework to
Build Formal Specifications for Deep Perception Systems Using Simulators)
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Simulators as data providers

• s : parameters (obstacles, weather
conditions. . .)

• g : simulator

• x : perceptual input (images)

• f : model

• y : decision output (brake. . .)

• φ : “∀ x that contains a pedestrian, do
not roll over it”

How to formulate φ ? What is an image x with a pedestrian ?
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Reformulation of our verification problem

Modify the verification problem formulation to include g and s

φ now encompasses s and can now be expressed : For all values of s that are translated
by g as the presence of pedestrians into x , do not run over those pedestrians

We now have a property to verify a perceptive unit !
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Refinement : splitting perception and reasoning

f splits in perception and reasoning, p learns s

φ1 on p : guarantee of no information loss : reconstruct s from x

s
′
= s ∀ s → p ◦ g = Id

φ2 on r : do not kill pedestrians (assuming perfect perception)
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Refinement : splitting perception and reasoning

f splits in perception and reasoning, p learns s

φ1 on p : guarantee of controlled information loss : reconstruct s from x

s
′ ' s ∀ s → p ◦ ||g − id < ε||

φ2 on r : do not kill pedestrians (assuming perfect perception)
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Express nets under our formalism

Compiler from onnx to logical formulaes (soon open source !)
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Future work

1. Sound and complete robustness checking algorithm (scalability is key)

2. Enlarge CAMUS framework to express simulators more efficiently

3. Manage more network architectures and operators

4. Properties expression engine

5. Multiple output targets to improve versatility

6. Others we may not have thought of yet. . .
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Final words

Thank you for listening, don’t hesitate to shoot your questions :)
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