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Necessity to certify deep neural
networks and challenges



Deep neural networks are awesome. . .

Active research community, profusion of tools, lot of industrial applications. . .

. . . yet
they are not perfect
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Adversarial examples (Szegedy et al. 2013)

Innocuous to humans, transferable between datasets, not systematic detection method
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Model theft (Tramèr et al. 2018)
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Dataset poisoning (Shafahi et al. 2018)
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Context : critical systems

A critical system is a system whose failure may cause physical harm, economical losses
or damage the environment
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How to bring confidence in software systems ?

Goal : guarantee that the system respects a safety specification

φ : an autonomous car will not run over pedestrians
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What about tests ?

Test on real
environment

real conditions
cumbersome, potentially
hazardous, non exhaustive

Test on virtual
environment

can be automated, easy to
integrate in existing workflow

non exhaustive, biased towards
success

And more (fuzzing. . .)

Useful technique, widely used, enough for most of use cases
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Sometimes, tests alone are not enough !

Claim Discussion

“A car drove 5,472km, 99% in
autonomous mode” 1

If it translate to a failure rate, 10−2 ,
insufficient compared to requirements
in other critical systems (about 10−6 in

aerospace)

“Our test cases are exhaustive”

Testing sets tend to be biased towards
“normal” operation (accidents are

rare) 2

1. https ://www.wired.com/2015/04/delphi-autonomous-car-cross-country/
2. https ://arstechnica.com/cars/2019/05/feds-autopilot-was-active-during-deadly-march-tesla-crash/
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Introducing formal methods

• Studied in the academics since 1930 (λ−calculus, Church, Turing)
• Different techniques : abstract interpretation (Cousot and Cousot 1977),

SAT/SMT (Davis and Putman 1960 ; Tinelli 2009), deductive verification
(Coquand 1989), etc.

• Used in industrial settings such as aerospace, automated transports, energy to
formally certify
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Key points

Work on domains D of inputs (global properties)

Answer is sound, formally guaranteed by mathematical logic
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Case study : a self-driving car perception unit

Dream property φ : the autonomous car never run over pedestrians

no formal characterization of what a pedestrian is !

Lack of formal definition on inputs prevents from formulating interesting safety
properties
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It’s hard to use formal methods on deep learning

Classical software Machine learning
Explicit control flow Generated control flow

Explicit specifications
Data-driven specifications (lack of

generality)
Abstractions and well known concepts Very few abstractions and reusability
Documented and understood
vulnerabilites

Flaws without systematic
characterization

Some differences between classical software and machine learning
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Another difficulty : performance of verification tools

2 cases per ReLU node for the sol-
vers
Several million ReLU nodes →
2O(106) case splits

Combinatory explosion (if done naively)
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Deep learning verification : a
review



Local properties : adversarial robustness

For a given input x, a classification function f , an adversarial perturbation δ :

find delta
satisfying

classifier misclassification

such that perturbation stays below a certain threshold
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Local properties : adversarial robustness

For a given input x, a classification function f , an adversarial perturbation δ :

find delta
satisfying

f (x) 6= f (x + δ)

such that ‖δ‖p ≤ ε
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DiffAI/DeepPoly (Gehr et al. 2018, Singh et al. 2019)

1. abstract the network

2. propagate perturbations

3. assess robustness properties

4. learn to minimize adversarial loss

Improve adversarial robustness on 100 samples from CIFAR-10 from 0 to 80%,
ε = 8/255, 3 hidden layers, convolutional network

Scalable verification, but local properties
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Global properties : ACAS-Xu

If the intruder is distant and is significantly
slower than the ownship, the score of a COC
advisory will always be below a certain fixed
threshold. Bounds : ρ ≥ 55947.691, vown ≥
1145, vint ≤ 60

Critical system
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ReLuPlex and Marabou (Katz et al. 2017, Katz et al. 2019)

Core of most SMT solvers working with num-
ber values
Modified to lazily evaluate ReLUs

Exact verification of several properties on a ACAS-Xu implementation

Global properties

Assumes perfect plane detection beforehand

How do we verify perception ? What is an intruder ?
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Verification of perception models
trained with simulators



Example of simulator

Industry relies more and more on simulators to generate scenarios to train and evaluate
deep learning models

Screenshot from the CARLA open source simulator
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Simulators as data providers

• s : parameters (obstacles, weather
conditions. . .)

• g : simulator

• x : perceptual input (images)

• f : model

• y : decision output (brake. . .)

• φ : “∀ x that contains a pedestrian, do
not roll over it”

How to formulate φ ? What is an image x with a pedestrian ?
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Reformulation of our verification problem

Modify the verification problem formulation to include g and s

φ now encompasses s and can now be expressed : For all values of s that are translated
by g as the presence of pedestrians into x , do not run over those pedestrians

We now have a property to verify a perceptive unit !
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Refinement : splitting perception and reasoning

f splits in perception and reasoning, p learns s

φ1 on p : guarantee of no information loss : reconstruct s from x

s
′
= s ∀ s → p ◦ g = Id

φ2 on r : do not kill pedestrians (assuming perfect perception)
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f splits in perception and reasoning, p learns s

φ1 on p : guarantee of controlled information loss : reconstruct s from x

s
′ ' s ∀ s → p ◦ ||g − id < ε||
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How to achieve that concretely ?

How to express φ, g , f , X , Y, S ?

SMTLIB : Tinelli et al., 2017, https ://onnx.ai/
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Toolkit to translate deep neural networks into SMTLIB

High-level workflow

From all mainstreams deep learning frameworks to all mainstreams SMT solvers
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Proof of concept and future works



Synthetic experiment : a simple self driving car perceptive unit

Train a simple model to output a single command directive if a simplified input is in a
pre-defined danger zone

s = (position of
obstacles)

x

output scalar (obstacle
detected if > 0)

y

Network has 16 neurons, 2 hidden layers

We prove the given trained network will never fail
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Translation of model

. . .
( d e c l a r e−fun l_1 . we ight38 ( ) Rea l )
( a s s e r t (= l_1 . we ight38 (/ (− 13947381) 1208925819614629174706176)))
( d e c l a r e−fun l_1 . we ight37 ( ) Rea l )
( a s s e r t (= l_1 . we ight37 (/ (− 405697 ) 2251799813685248)))
( d e c l a r e−fun l_1 . we ight36 ( ) Rea l )

. . .

Part of the network’s translation
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Future work

1. Include noise and incomplete reconstruction in the framework

2. Add rewriting rules

3. Release and enhance the toolkit

4. Add a systematic representation of the simulator

5. Integration of state-of-the art verification tools
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Questions ?

Any questions ?

contact for the paper : julien.girard2@cea.fr
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