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On the necessity to trust programs

Trust:

+ Software needs to work
« Social acceptance for fair societies

« But trust is a complex notion...
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On the necessity to trust programs

Trust:

+ Software needs to work
« Social acceptance for fair societies

« But trust is a complex notion...
Reliability:

« Behaving consistently

+ Regarding specified operating conditions
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On the necessity to formally verify programs

Specification

input space D

verified answer

VaeeD

Specification is violated
Verification >
problem <
Program @ Specification is verified

Formal verification
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What deep learning programming is

THIS 15 YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN (OLLECT
THE ANSLJERS ON THE CTHER SIDE.

WHAT I THE ANSLERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

|
! EH?\‘ %\@&E’

o

All credits to Randall Munroe

Conclusion
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What deep learning pr

collection and labelling of
learning data

= 208080

training  testing  deployment ¥
ming £(fy)

choice of a learning methodology
according to data structure

- software that takes data and performance criterion as specification (for instance: loss function)

» training modifies the base program until sufficient performance levels are reached
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Conclusion

What deep learning pr

e Deepl Traducteur  DeepLPro APl Forfaits et tarifs T el Connexion

@ Trduredutexte () Traduie des fchiers

CAT: 99%

Frangals (langue détectée) v/ Finnois v/ Glossare

i

Cette thése est incroyablement bien écrite

Téma tutkielma on uskomattoman hyvin
et l'auditoire d'une intelligence rare

Kirjoitettu ja yleis® harvinainen &lykkyytts

Ry 0%

Natural language processing, object detection...pattern detection on perceptive inputs

(inputs we perceive as humans) of high dimension (400 x 300 x 3 = 360000 values to
describe Ernest)
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How deep learning programs (may) fail

from Robust Physical-World Attacks on Deep NTSB investigations on Uber and Tesla
Learning Visual Classification, Eykholt,
Evtimov et al., CVPR 2018
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What deep learning broke in the verification process

Unable to (Specification unable to provide a
build a set of inputs verified answer

formal D \v/ T € D

specification

Specification is

% violated

Specification is
verified

Program

No exploitable . ]
structure Formal verification
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What is at stake?

This [ Specification |  Writer agent Maturity of
Thesis verification tools
000 ) Astréee  royspace
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programs : Joy dimensional input, § a programmer/ mature tools, multiple
i eaplicit specification i automaton directly i properties can be written,
i writes the program efficient heuristics  Verification
) procedure
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input, data as partial “minimization indirectly © expressive
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Specification Tooling

How to improve the

How to write proper machinery of traditional

specifications for deep solvers to scale on deep

i ? :
learning software? learning software?
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The specification problem
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What do we need to formalize?

a specification

no formally specifiable inputs

Conclusion

</>

a program

no exploitable structure
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Running example: perception unit

—> {contlnue 'brake go left,
go right,...}
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Running example: perception unit

B {l ,
Ladl \ VW
—>» {continue, brake, go left,
go right,...}

Dream property: for all images that contain a pedestrian, the autonomous car will never take a
decision that would result in running over perceived pedestrians
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Running example: perception unit
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go right,...}

Dream property: for all images that contain a pedestrian, the autonomous car will never take a
decision that would result in running over perceived pedestrians

no formal characterization of what an image with a pedestrian is!
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Conclusion

On trusting pro; s The specification problem The tooling problem

00@000000000000

Running example: perception unit

—> {contlnue brake go left,
go right,...}

Dream property: for all images that contain a pedestrian, the autonomous car will never take a
decision that would result in running over perceived pedestrians

no formal characterization of what an image with a pedestrian is!

Lack of formal definition on inputs = no relevant safety properties

14/ 46
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Formalization

« X:input space
+ x € X: input sample
—> Y « f: decision function

e y:output
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Formalization

« X: input space: no formal definition
+ x € X: input sample

—> Y « f: decision function: no exploitable structure

g
.

y: output: fixed format, but unknown value for

data outside of the training set
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Formalization

« X: input space: no formal definition

+ x € X: input sample

=
[ ]

f: decision function: no exploitable structure

y: output: fixed format, but unknown value for

data outside of the training set

no property to verify, thus no formal specification

15/ 46
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Special cases where formal verification is possible

replacing programs with an existing se-
mantic (e.g., ACAS-Xu)

- -7 Intruder
/ Y P
! Phd '
' 1
' 1

v v

*\ Ownship.”

g

Global properties on existing semantic
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replacing programs with an existing se-
mantic (e.g., ACAS-Xu)
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Global properties on existing semantic

Conclusion

Special cases where formal verification is possible

working on local perceptual inputs (e.g.,

adversarial robustness)
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Local properties on perceptual inputs
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The specification problem
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replacing programs with an existing se-
mantic (e.g., ACAS-Xu)

*\ Ownship.”

9 -

Global properties on existing semantic

We aim to provide global properties on perceptual inputs

Conclusion

Special cases where formal verification is possible

working on local perceptual inputs (e.g.,

adversarial robustness)
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Local properties on perceptual inputs
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Simulators in the industry

Pros of using simulators for deep learning
programming:

« lower costs

« more control on the design

« better edge cases scenarios handling

Screenshot from the CARLA open source simulator
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Simulators as data providers

®

o~

« s € S: scenario parameters (weather « f: model

condition, location of pedestrian...
" I . l ) « y: decision output (brake...)

« g:simulator 3 . .
« ®: “Vx that contains a pedestrian, do not

« x: perceptual input (images) run over it”
How to formulate $? What is an image x with a pedestrian?

18 /46
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Our approach

Modify the verification problem formulation to include g and s
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Our approach

Modify the verification problem formulation to include g and s

Since s is part of ®, ® can now be expressed formally:

Vs € § such that {spedestrian > 1} 7f(g(s)) = Ybrake
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Our approach

Modify the verification problem formulation to include g and s

Since s is part of ®, ® can now be expressed formally:

Vs € § such that {spedestrian > 1} 7f(g(s)) = Ybrake

We now have a property to verify a perceptive unit!
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Our approach

y Nl A
L2V AN AN
{continue, brake, go left,
go right,...}

Certifying Autonomous Models Using Simulators (CAMUS)': put the burden of trust on

the simulator’s input space to achieve a specifiable set of inputs

'CAMUS: A Framework to Build Formal Specifications for Deep Perception Systems Using Simulators,
Girard-Satabin et al., ECAI 2020
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Refinement: splitting perception and reasoning

|
7
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®, ~

f splits in perception and reasoning

®; on p: guarantee of no relevant information loss: reconstruct s from x
Vs, s = s, which is phrased as po g(s) = s

®, on r: do not kill pedestrians (assuming perfect perception), which is phrased as

’ ’
Vs ’ spedestrian >1 y Y = Ybrake
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Refinement: splitting perception and reasoning
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f splits in perception and reasoning

®; on p: guarantee of controlled relevant information loss: reconstruct s from x
Vs, s~ s, which is phrased as |[p o g(s) — s|| < &

®, on r: do not kill pedestrians (assuming perfect perception), which is phrased as
Vs/, {s;)edestrian 2 1} » Y = Ybrake
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How to implement CAMU

How to express @, g, f, X7?
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How to implement CAMUS?

How to express @, g, f, X7?
At the beginning of this thesis (2017), there were less than five papers on formal
verification of DNN (in 2021, several workshops, a competition...)
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How to implement CAMUS?

How to express @, g, f, X7?
At the beginning of this thesis (2017), there were less than five papers on formal
verification of DNN (in 2021, several workshops, a competition...)

THE SATISFIABILITY MODULO THEORIES LIBRARY

AN

T
. Keras TensorFlow © PyTorch Zg gg Yices2 o

Bridging two existing standards to create an Inter Standard Al Encoding Hub (ISAIEH)

22/ 46



The specification problem he Conclusion
00000000000 e000 00 ole 0000

ISAIEH

Inter Standard Al Encoding Hub

o Written in OCaml (~ 9100 LOC)

« Input: ONNX neural networks (universal representation)

« Output: SMTLIB2 targetting several theories (QF_NRA, QF_LRA, QF_FP)
« Under LGPLv2 license

» Heavy use of ppx features

« Abstract API for easy addition of new solvers

« Limitation: no support for generic simulator description

23/ 46
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Principle of ISAIEH

Build SMT formulae encoding;:

—_

. Network control flow ¢": flattened and written as SMTLIB2 commands
2. Property to verify ¢?

3. Input constraints ¢*: linear constraints

4

. Simulator description ¢

ISAIEH then sends ¢™ A ¢P A ¢* N §8 to external solvers

24/ 46
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ISAIEH

.
( ONNX_PARSER [ NIER
LONNX protobuf parsing . operators definition LP format
J L J SMTLIB2 format
Y

PROBLEM 1
[PROBLEM_PARSERJ—> conversion to Z3 API

conversion to LP API
.
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Synthetic experiment: a simple self driving car perceptive unit

Train a simple model to output a single command directive if a simplified input is in a

pre-defined danger zone

output scalar (obstacle

s = (position of obstacles) . - dezslied (i > 0)

y

X

Network is relatively small
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Synthetic experiment: a simple self driving car perceptive unit

Train a simple model to output a single command directive if a simplified input is in a

pre-defined danger zone

output scalar (obstacle

s = (position of obstacles) . - dezslied (i > 0)

y

X

Network is relatively small

We have proven the given trained network will never fail

26/ 46
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Specification v/ Tooling

How to improve the machinery of

We could rely on simulators to

obtain specifications for deep traditional solvers to scale on deep

learning software learning software?



The tooling problem Conclusion
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The relu: a piece-wise linear activation function

relu : x € R — max(x,0)

relu function, linear on ] — 0o; 0] and [0; oo

o : x — relu(x) yields two states: either active (x > 0) or inactive (x < 0)
28 / 46
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W1 € R32 w2 € R?3

A neural network is a succession of linear operations (addition, multiplication by a constant)
followed by a non-linear activation function o

Networks with relu are widely used: we will study them in the rest of this thesis

nclusion
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z3 = —x1 +x<0

30/ 46



On trusting prog ecification prob The tooling problem

000080000000 000000
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xy € [0,0.4] 5 =x+%>0 2 = 2x1 + 26> 0
z%=x1+xz>0 z§:—x1—xz<0

Z=—x1+x0<0
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Activation states yield constraints on the input space

1. Activation states result on constraints
that partition the input space

2. Activation states of layer [ constraint *2

m\m\m\m\‘

activation states of layers [ 4 1, hence

It

the broken lines

3. We call activation regions F facets

31/46
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Restricting neural networks to facets results in a linear function

The restriction of a network on F

can be rewritten as a linear func-

tion:

fir = diag(A*) Wdiag(A" ) W'

32/ 46
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Current state of affair for specialized tools

1. Formal verification of feedforward relu networks is a NP-complete problem?

2. Naive branching at each activation node on a network with n neurons would lead
to 2" cases: combinatorial explosion
3. Prior experiments done with Frama-C EVA showed scalability difficulties on small

networks

?Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks, Katz et al., CAV 2017

33/46
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Some hope for the future

1. SAT is a NP-complete problem, but multiple inventions led to a number of highly
performant tools (CDCL, 2-watched literals...)

2. Specialized branch-and-bound approaches are starting to get leverage?
3. Tighter upper bounds in the number of facets for certain class of networks*: O(Z—‘!j)

4. Neural networks we consider are highly connected, without loops: better search

heuristics may arise

3Branch and bound for piecewise linear neural network verification, Bunel et al., JMLR 2020
“Deep ReLU Networks Have Surprisingly Few Activation Patterns, Hanin et al., NeurIPS 2019

34 /46
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Neural networks are linear functions when restricted to a facet
Linear functions are more amenable for solvers

Enumerating facets and verifying properties on each may be scalable




Neural networks are linear functions when restricted to a facet
Linear functions are more amenable for solvers
Enumerating facets and verifying properties on each may be scalable

DISCO Verification: Division of Input Space into COnvex polytopes for neural network

verification®

> Partitionnement en régions linéaires pour la vérification formelle de réseaux de neurones, Girard-Satabin,
Varasse et al., JFLA 2021
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How to enumerate facets?

First attempt was a geometric approach: from one facet, find the geometrical
neighbours. Vertex Enumeration is a well-researched problem

®*The quickhull algorithm for convex hulls, Barber et al., ACM Transactions on Mathematical Software, 4
Dec. 1996
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neighbours. Vertex Enumeration is a well-researched problem

« high dimensional geometry (curse of

dimensionality)

« dependency between layers = no

vertex enumeration

« complexity for convex hull for one

facet® is (’)(%)

®*The quickhull algorithm for convex hulls, Barber et al., ACM Transactions on Mathematical Software, 4

Dec. 1996
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First attempt was a geometric approach: from one facet, find the geometrical

neighbours. Vertex Enumeration is a well-researched problem

« high dimensional geometry (curse of

dimensionality)

« dependency between layers = no

vertex enumeration

« complexity for convex hull for one

facet® is (’)(%)

other path

®*The quickhull algorithm for convex hulls, Barber et al., ACM Transactions on Mathematical Software, 4

Dec. 1996

Conclusion
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DISCO by example

37/ 46



X2 S [Oa 1]

1 1
2 =2z =x1+x >0

The tooling problem
00000000000 e000000

Conclusion

37/ 46



X2 S [Oa 1]

1 1
2 =2z =x1+x >0

11
n =2

The tooling problem
00000000000 e000000

Conclusion

37/ 46



The tooling problem Conclusion

00000000000 e000000

1 1
2=z =x1+x >0

11
n =2

37/ 46



The tooling problem Conclusion

00000000000 e000000

X1 € [0, 1]

1 1
2=z =x1+x >0

11
n =2

37/ 46



On trusting programs The specification pro The tooling problem Conclusion
00000000000 e000000 [e]e]e]e)

DISCO by example

X2 S [Oa 1]

1 1
2=z =x1+x >0

11
n =2
1_
Y2 = 2
z3 = —x1 +x

37/ 46



On trusting programs The specification pro The tooling problem Conclusion
00000000000 e000000 [e]e]e]e)

DISCO by example

X2 S [Oa 1]

1 11 1 1
=z =x-+x>0 7 20y =z 73 <0 y; =0
1
n =2
1_
Y2 = 2
z3 = —x1 + x2

37/ 46



X2 S [Oa 1]

1 1
2 =2z =x1+x >0

11
n =2
11
Y2 = 2
1_
z3 = —x1 + x2

2 1 1 1
L=yt =y

The tooling problem
00000000000 e000000

7 <0 yp =0

Conclusion

37/ 46



Conclusion

The specification problem The tooling problem

On trusting programs
6 00000000000 e000000

DISCO by example
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ISAIEH unveiled

‘ ONNX_PARSER NIER

Y
Y

LP format
SMTLIB2 format
A

‘ ONNX protobuf parsing operators definition

Y
PROBLEM \

PROBLEM_PARSER |—————> conversion to Z3 API

conversion to LP API

DISCO algorithm

\ SOLVE \
‘ 73, GUROBI, GLPK bindings ‘
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Comparing to upper bounds
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Number of facets for several input dimensions
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Number of points per unique activation pattern for 10000 samples
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A tradeoff between accuracy and number of facets
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A tradeoff between accuracy and number of facets
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Maximrum-Margin-Regularization (MMR)-does-ret-have-a-significant impact

Provable Robustness of ReLU networks via Maximization of Linear Regions, Croce et al., AISTATS 2019

Conclusion
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. o . Total time
Problem No split DISCO verification ~ Facet enumeration
DISCO
multiplication 3 0.769s40.0205 0.14551+0.012 2.695£0.0596 2.83s
multiplication 4 5.43540.31 0.71s40.0591 13.15£0.859 13.8s
multiplication 5 0.0179s20.00596 0.0771s=0.0077 0.699s+0.0124 0.776s
multiplication 6 0.0264s+0.00124 0.9885+0.0693 11.651+0.186 12.6s
multiplication 7 0.0474s£0.00158 16.8510.831 2275+£8.51 244s
multiplication 8 0.0484s5£0.00551 1.655£0.113 27.2s£0.576 28.8s
5 X 5 perception 132s 23.7s 0.86s 24.56s
) TIMEOUT
7 x 7 perception 1393s 15.38s 1406.38s
(>10000s)

DISCO boost SMT solvers without changing their inner working (can be further

enhanced with heuristics)
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Related work

1. Marabou? relies on SMT solving to perform branch and bound, but is still

specialized against ACAS benchmarks
2. ERAN? is much faster than DISCO (less than 0.01s on perception), but can only

handle linear properties

3. Facets enumeration algorithm exists'?, but not for formal verification

DISCO is slower, but more generic and solver agnostic

8Katz et al., 2019
Vechev et al., 2018-2021
Serra et al., 2018
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Scientific contributions

« Proposed a formalism to use simulators as perceptual inputs specification
+ Implemented an ONNX to SMTLIB and LP compiler

+ Built a problem splitting algorithm taking advantage of the piecewise linear nature

of relu networks

» Analyzed linear regions distribution and explored their practical use for formal

verification of deep neural networks
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Perspectives

1. Simulators for ISAIEH: taking into account simulators as machine learning
programs

2. Enhancing DISCO: counting facets directly is not the best approach; using

dependency analysis to reduce the number of solver calls
3. Engineering work to deal with more design possibilites (cambrian explosion of tools)

4. Expressing more complex properties is key: industrial adoption is the goal
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Contributions

Publications and prepublications

« DISCO Verification: Division of Input Space into COnvex polytopes for neural network verification, ). Girard-Satabin, A. Varasse, G. Charpiat, Z.
Chihani, M. Schoenauer, to be published

«  Partitionnement en régions linéaires pour la vérification formelle de réseaux de neurones, ). Girard-Satabin, A. Varasse, G. Charpiat, Z. Chihani,
M. Schoenauer, JFLA 2021

«  CAMUS: A Framework to Build Formal Specifications for Deep Perception Systems Using Simulators, . Girard-Satabin, G. Charpiat, Z. Chihani,
M. Schoenauer, ECAI 2020

Dissemination

« Theory and practice of deep neural network verification, DFKI 2021, PFIA 2020, also as a M2 course at Master SETI

« Detection of behaviours using machine learning in the public space, La Quadrature du Net, outreach conference, 2021

« ForMal DIGICOSME Spring School, 2019

Software

| r

« Inter Standard Al Ecoding Hub (ISAIEH), LGPLv2, to be merged within the CAISAR platform developped at LSL
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