
Formal Verification of Machine Learning Techniques

Julien Girard-Satabin (CEA LIST/INRIA TAU)

Pawan Kumar, rapporteur (Oxford University) Antoine Miné, rapporteur (Université Paris-Sorbonne)
Sylvie Putot, examinatrice (LIX) Gilles Dowek, examinateur (INRIA)
Caterina Urban, examinatrice (INRIA)
Guillaume Charpiat, co-encadrant (INRIA) Zakaria Chihani, co-encadrant (CEA LIST)
Marc Schoenauer, directeur (INRIA)

February 15, 2022

On trusting programs

So�ware is interlinked with human activities

On trusting programs The specification problem The tooling problem Conclusion

On the necessity to trust programs

Trust:

• So�ware needs to work

• Social acceptance for fair societies

• But trust is a complex notion...

Reliability:

• Behaving consistently

• Regarding specified operating conditions

3 / 46

On trusting programs The specification problem The tooling problem Conclusion

On the necessity to trust programs

Trust:

• So�ware needs to work

• Social acceptance for fair societies

• But trust is a complex notion...

Reliability:

• Behaving consistently

• Regarding specified operating conditions

3 / 46

On trusting programs The specification problem The tooling problem Conclusion

On the necessity to formally verify programs

4 / 46

On trusting programs The specification problem The tooling problem Conclusion

Formal verification is a success...

5 / 46

On trusting programs The specification problem The tooling problem Conclusion

What deep learning programming is

All credits to Randall Munroe

7 / 46

On trusting programs The specification problem The tooling problem Conclusion

What deep learning programming is

• so�ware that takes data and performance criterion as specification (for instance: loss function)
• training modifies the base program until su�icient performance levels are reached

7 / 46

On trusting programs The specification problem The tooling problem Conclusion

What deep learning programming allows

Natural language processing, object detection. . . pattern detection on perceptive inputs
(inputs we perceive as humans) of high dimension (400× 300× 3 = 360000 values to
describe Ernest)

8 / 46

On trusting programs The specification problem The tooling problem Conclusion

How deep learning programs (may) fail

from Robust Physical-World Attacks on Deep
Learning Visual Classification, Eykholt,
Evtimov et al., CVPR 2018

NTSB investigations on Uber and Tesla

9 / 46

On trusting programs The specification problem The tooling problem Conclusion

What deep learning broke in the verification process

10 / 46

What is at stake?

What is at stake?

What is at stake?

What is at stake?

What is at stake?

What is at stake?

Specification

How to write proper
specifications for deep

learning so�ware?

Tooling

How to improve the
machinery of traditional
solvers to scale on deep

learning so�ware?

The specification problem

On trusting programs The specification problem The tooling problem Conclusion

What do we need to formalize?

a specification a program
no formally specifiable inputs no exploitable structure

13 / 46

On trusting programs The specification problem The tooling problem Conclusion

Running example: perception unit

Dream property: for all images that contain a pedestrian, the autonomous car will never take a
decision that would result in running over perceived pedestrians

no formal characterization of what an image with a pedestrian is!

Lack of formal definition on inputs =⇒ no relevant safety properties

14 / 46

On trusting programs The specification problem The tooling problem Conclusion

Running example: perception unit

Dream property: for all images that contain a pedestrian, the autonomous car will never take a
decision that would result in running over perceived pedestrians

no formal characterization of what an image with a pedestrian is!

Lack of formal definition on inputs =⇒ no relevant safety properties

14 / 46

On trusting programs The specification problem The tooling problem Conclusion

Running example: perception unit

Dream property: for all images that contain a pedestrian, the autonomous car will never take a
decision that would result in running over perceived pedestrians

no formal characterization of what an image with a pedestrian is!

Lack of formal definition on inputs =⇒ no relevant safety properties

14 / 46

On trusting programs The specification problem The tooling problem Conclusion

Running example: perception unit

Dream property: for all images that contain a pedestrian, the autonomous car will never take a
decision that would result in running over perceived pedestrians

no formal characterization of what an image with a pedestrian is!

Lack of formal definition on inputs =⇒ no relevant safety properties
14 / 46

On trusting programs The specification problem The tooling problem Conclusion

Formalization

• X : input space

: no formal definition

• x ∈ X : input sample

• f : decision function

: no exploitable structure

• y: output

: fixed format, but unknown value for
data outside of the training set

no property to verify, thus no formal specification

15 / 46

On trusting programs The specification problem The tooling problem Conclusion

Formalization

• X : input space: no formal definition

• x ∈ X : input sample

• f : decision function: no exploitable structure

• y: output: fixed format, but unknown value for
data outside of the training set

no property to verify, thus no formal specification

15 / 46

On trusting programs The specification problem The tooling problem Conclusion

Formalization

• X : input space: no formal definition

• x ∈ X : input sample

• f : decision function: no exploitable structure

• y: output: fixed format, but unknown value for
data outside of the training set

no property to verify, thus no formal specification

15 / 46

On trusting programs The specification problem The tooling problem Conclusion

Special cases where formal verification is possible

replacing programs with an existing se-
mantic (e.g., ACAS-Xu)

Global properties on existing semantic

We aim to provide global properties on perceptual inputs

16 / 46

On trusting programs The specification problem The tooling problem Conclusion

Special cases where formal verification is possible

replacing programs with an existing se-
mantic (e.g., ACAS-Xu)

working on local perceptual inputs (e.g.,
adversarial robustness)

Global properties on existing semantic Local properties on perceptual inputs

We aim to provide global properties on perceptual inputs

16 / 46

On trusting programs The specification problem The tooling problem Conclusion

Special cases where formal verification is possible

replacing programs with an existing se-
mantic (e.g., ACAS-Xu)

working on local perceptual inputs (e.g.,
adversarial robustness)

Global properties on existing semantic Local properties on perceptual inputs

We aim to provide global properties on perceptual inputs

16 / 46

On trusting programs The specification problem The tooling problem Conclusion

Simulators in the industry

Screenshot from the CARLA open source simulator

Pros of using simulators for deep learning
programming:

• lower costs

• more control on the design

• better edge cases scenarios handling

17 / 46

On trusting programs The specification problem The tooling problem Conclusion

Simulators as data providers

• s ∈ S : scenario parameters (weather
condition, location of pedestrian. . .)

• g: simulator

• x: perceptual input (images)

• f : model

• y: decision output (brake. . .)

• Φ: “∀x that contains a pedestrian, do not
run over it”

How to formulate Φ? What is an image x with a pedestrian?
18 / 46

On trusting programs The specification problem The tooling problem Conclusion

Our approach

Modify the verification problem formulation to include g and s

Since s is part of Φ, Φ can now be expressed formally:

∀s ∈ S such that
{
spedestrian ≥ 1

}
, f (g(s)) = ybrake

We now have a property to verify a perceptive unit!

19 / 46

On trusting programs The specification problem The tooling problem Conclusion

Our approach

Modify the verification problem formulation to include g and s

Since s is part of Φ, Φ can now be expressed formally:

∀s ∈ S such that
{
spedestrian ≥ 1

}
, f (g(s)) = ybrake

We now have a property to verify a perceptive unit!

19 / 46

On trusting programs The specification problem The tooling problem Conclusion

Our approach

Modify the verification problem formulation to include g and s

Since s is part of Φ, Φ can now be expressed formally:

∀s ∈ S such that
{
spedestrian ≥ 1

}
, f (g(s)) = ybrake

We now have a property to verify a perceptive unit!
19 / 46

On trusting programs The specification problem The tooling problem Conclusion

Our approach

Certifying Autonomous Models Using Simulators (CAMUS)1: put the burden of trust on
the simulator’s input space to achieve a specifiable set of inputs

1CAMUS: A Framework to Build Formal Specifications for Deep Perception Systems Using Simulators,
Girard-Satabin et al., ECAI 2020

20 / 46

On trusting programs The specification problem The tooling problem Conclusion

Refinement: splitting perception and reasoning

f splits in perception and reasoning

Φ1 on p: guarantee of no relevant information loss: reconstruct s from x
∀s, s = s

′
, which is phrased as p ◦ g(s) = s

Φ2 on r : do not kill pedestrians (assuming perfect perception), which is phrased as

∀s′ ,
{
s
′

pedestrian ≥ 1
}
, y = ybrake

21 / 46

On trusting programs The specification problem The tooling problem Conclusion

Refinement: splitting perception and reasoning

f splits in perception and reasoning

Φ1 on p: guarantee of controlled relevant information loss: reconstruct s from x
∀s, s ' s

′
, which is phrased as ||p ◦ g(s)− s|| < ε

Φ2 on r : do not kill pedestrians (assuming perfect perception), which is phrased as

∀s′ ,
{
s
′

pedestrian ≥ 1
}
, y = ybrake

21 / 46

On trusting programs The specification problem The tooling problem Conclusion

How to implement CAMUS?

How to express Φ, g, f , X ?

At the beginning of this thesis (2017), there were less than five papers on formal
verification of DNN (in 2021, several workshops, a competition...)

Bridging two existing standards to create an Inter Standard AI Encoding Hub (ISAIEH)

22 / 46

On trusting programs The specification problem The tooling problem Conclusion

How to implement CAMUS?

How to express Φ, g, f , X ?
At the beginning of this thesis (2017), there were less than five papers on formal
verification of DNN (in 2021, several workshops, a competition...)

Bridging two existing standards to create an Inter Standard AI Encoding Hub (ISAIEH)

22 / 46

On trusting programs The specification problem The tooling problem Conclusion

How to implement CAMUS?

How to express Φ, g, f , X ?
At the beginning of this thesis (2017), there were less than five papers on formal
verification of DNN (in 2021, several workshops, a competition...)

Bridging two existing standards to create an Inter Standard AI Encoding Hub (ISAIEH)

22 / 46

On trusting programs The specification problem The tooling problem Conclusion

How to implement CAMUS?

How to express Φ, g, f , X ?
At the beginning of this thesis (2017), there were less than five papers on formal
verification of DNN (in 2021, several workshops, a competition...)

Bridging two existing standards to create an Inter Standard AI Encoding Hub (ISAIEH)

22 / 46

On trusting programs The specification problem The tooling problem Conclusion

ISAIEH

Inter Standard AI Encoding Hub

• Written in OCaml (' 9100 LOC)

• Input: ONNX neural networks (universal representation)

• Output: SMTLIB2 targetting several theories (QF_NRA, QF_LRA, QF_FP)

• Under LGPLv2 license

• Heavy use of ppx features

• Abstract API for easy addition of new solvers

• Limitation: no support for generic simulator description

23 / 46

On trusting programs The specification problem The tooling problem Conclusion

Principle of ISAIEH

Build SMT formulae encoding:

1. Network control flow φn: flattened and written as SMTLIB2 commands

2. Property to verify φp

3. Input constraints φx : linear constraints

4. Simulator description φg

ISAIEH then sends φn ∧ φp ∧ φx ∧ φg to external solvers

24 / 46

On trusting programs The specification problem The tooling problem Conclusion

ISAIEH

ONNX_PARSER

ONNX protobuf parsing

NIER

operators definition

OUTS

LP format
SMTLIB2 format

PROBLEM

conversion to Z3 API
conversion to LP API

PROBLEM_PARSER

25 / 46

On trusting programs The specification problem The tooling problem Conclusion

Synthetic experiment: a simple self driving car perceptive unit

Train a simple model to output a single command directive if a simplified input is in a
pre-defined danger zone

s = (position of obstacles)

x

output scalar (obstacle
detected if > 0)

y

Network is relatively small

We have proven the given trained network will never fail

26 / 46

On trusting programs The specification problem The tooling problem Conclusion

Synthetic experiment: a simple self driving car perceptive unit

Train a simple model to output a single command directive if a simplified input is in a
pre-defined danger zone

s = (position of obstacles)

x

output scalar (obstacle
detected if > 0)

y

Network is relatively small

We have proven the given trained network will never fail

26 / 46

The tooling problem

Specification 3

We could rely on simulators to
obtain specifications for deep

learning so�ware

Tooling

How to improve the machinery of
traditional solvers to scale on deep

learning so�ware?

On trusting programs The specification problem The tooling problem Conclusion

The relu: a piece-wise linear activation function

0

relu : x ∈ R 7→ max(x, 0)

relu function, linear on]−∞; 0] and [0;∞[

σ : x 7→ relu(x) yields two states: either active (x > 0) or inactive (x ≤ 0)
28 / 46

On trusting programs The specification problem The tooling problem Conclusion

Some notions of deep neural networks

x1

x2

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

σ

σ

σ

σ

σ

W1 ∈ R3,2 W2 ∈ R2,3

A neural network is a succession of linear operations (addition, multiplication by a constant)
followed by a non-linear activation function σ

Networks with relu are widely used: we will study them in the rest of this thesis

29 / 46

On trusting programs The specification problem The tooling problem Conclusion

Feedforward propagation by example

x1

x1 ∈ [0.6, 1] numbers are weights

x2

x2 ∈ [0, 0.4]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

−1

1

1

1

1

−0.5

1

−0.5

−1

1

z11 = x1 + x2

> 0

z12 = x1 + x2

> 0

z13 = −x1 + x2

< 0

z21 = 2x1 + 2x2

> 0

z22 = −x1 − x2

< 0

30 / 46

On trusting programs The specification problem The tooling problem Conclusion

Feedforward propagation by example

x1

x1 ∈ [0.6, 1]

x2

x2 ∈ [0, 0.4]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

z11 = x1 + x2

> 0

z12 = x1 + x2

> 0

z13 = −x1 + x2

< 0

z21 = 2x1 + 2x2

> 0

z22 = −x1 − x2

< 0

30 / 46

On trusting programs The specification problem The tooling problem Conclusion

Feedforward propagation by example

x1

x1 ∈ [0.6, 1]

x2

x2 ∈ [0, 0.4]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

A

z11 = x1 + x2> 0

z12 = x1 + x2

> 0

z13 = −x1 + x2

< 0

z21 = 2x1 + 2x2

> 0

z22 = −x1 − x2

< 0

30 / 46

On trusting programs The specification problem The tooling problem Conclusion

Feedforward propagation by example

x1

x1 ∈ [0.6, 1]

x2

x2 ∈ [0, 0.4]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

A

z11 = x1 + x2> 0

z12 = x1 + x2

> 0

z13 = −x1 + x2

< 0

z21 = 2x1 + 2x2

> 0

z22 = −x1 − x2

< 0

30 / 46

On trusting programs The specification problem The tooling problem Conclusion

Feedforward propagation by example

x1

x1 ∈ [0.6, 1]

x2

x2 ∈ [0, 0.4]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

A

B

z11 = x1 + x2> 0

z12 = x1 + x2> 0

z13 = −x1 + x2

< 0

z21 = 2x1 + 2x2

> 0

z22 = −x1 − x2

< 0

30 / 46

On trusting programs The specification problem The tooling problem Conclusion

Feedforward propagation by example

x1

x1 ∈ [0.6, 1]

x2

x2 ∈ [0, 0.4]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

z11 = x1 + x2> 0

z12 = x1 + x2> 0

z13 = −x1 + x2

< 0

z21 = 2x1 + 2x2

> 0

z22 = −x1 − x2

< 0

30 / 46

On trusting programs The specification problem The tooling problem Conclusion

Feedforward propagation by example

x1

x1 ∈ [0.6, 1]

x2

x2 ∈ [0, 0.4]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

C

z11 = x1 + x2> 0

z12 = x1 + x2> 0

z13 = −x1 + x2< 0

z21 = 2x1 + 2x2

> 0

z22 = −x1 − x2

< 0

30 / 46

On trusting programs The specification problem The tooling problem Conclusion

Feedforward propagation by example

x1

x1 ∈ [0.6, 1]

x2

x2 ∈ [0, 0.4]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

C

1

1

−1

z11 = x1 + x2> 0

z12 = x1 + x2> 0

z13 = −x1 + x2< 0

z21 = y11 + y12 − y13

z21 = 2x1 + 2x2

> 0

z22 = −x1 − x2

< 0

30 / 46

On trusting programs The specification problem The tooling problem Conclusion

Feedforward propagation by example

x1

x1 ∈ [0.6, 1]

x2

x2 ∈ [0, 0.4]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

C

1

1

−1

z11 = x1 + x2> 0

z12 = x1 + x2> 0

z13 = −x1 + x2< 0

z21 = 2x1 + 2x2

> 0

z22 = −x1 − x2

< 0

30 / 46

On trusting programs The specification problem The tooling problem Conclusion

Feedforward propagation by example

x1

x1 ∈ [0.6, 1]

x2

x2 ∈ [0, 0.4]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

C

1

1

−1

D

z11 = x1 + x2> 0

z12 = x1 + x2> 0

z13 = −x1 + x2< 0

z21 = 2x1 + 2x2> 0

z22 = −x1 − x2

< 0

30 / 46

On trusting programs The specification problem The tooling problem Conclusion

Feedforward propagation by example

x1

x1 ∈ [0.6, 1]

x2

x2 ∈ [0, 0.4]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

C

1

1

−1

−0.5

−0.5

1

D

z11 = x1 + x2> 0

z12 = x1 + x2> 0

z13 = −x1 + x2< 0

z21 = 2x1 + 2x2> 0

z22 = −0.5y11 − 0.5y12 + y13

z22 = −x1 − x2

< 0

30 / 46

On trusting programs The specification problem The tooling problem Conclusion

Feedforward propagation by example

x1

x1 ∈ [0.6, 1]

x2

x2 ∈ [0, 0.4]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

C

1

1

−1

−0.5

−0.5

1

D

z11 = x1 + x2> 0

z12 = x1 + x2> 0

z13 = −x1 + x2< 0

z21 = 2x1 + 2x2> 0

z22 = −x1 − x2

< 0

30 / 46

On trusting programs The specification problem The tooling problem Conclusion

Feedforward propagation by example

x1

x1 ∈ [0.6, 1]

x2

x2 ∈ [0, 0.4]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

C

1

1

−1

−0.5

−0.5

1

D

E

z11 = x1 + x2> 0

z12 = x1 + x2> 0

z13 = −x1 + x2< 0

z21 = 2x1 + 2x2> 0

z22 = −x1 − x2< 0

30 / 46

On trusting programs The specification problem The tooling problem Conclusion

Activation states yield constraints on the input space

1. Activation states result on constraints
that partition the input space

2. Activation states of layer l constraint
activation states of layers l + 1, hence
the broken lines

3. We call activation regions F facets

A

B

C

D

E

x2

x1
AB

C

D

E F
31 / 46

On trusting programs The specification problem The tooling problem Conclusion

Restricting neural networks to facets results in a linear function

The restriction of a network on F
can be rewritten as a linear func-
tion:

f|F = diag(A2)W 2diag(A1)W 1

32 / 46

On trusting programs The specification problem The tooling problem Conclusion

Current state of a�air for specialized tools

1. Formal verification of feedforward relu networks is a NP-complete problem2

2. Naive branching at each activation node on a network with n neurons would lead
to 2n cases: combinatorial explosion

3. Prior experiments done with Frama-C EVA showed scalability di�iculties on small
networks

2Reluplex: An E�icient SMT Solver for Verifying Deep Neural Networks, Katz et al., CAV 2017

33 / 46

On trusting programs The specification problem The tooling problem Conclusion

Some hope for the future

1. SAT is a NP-complete problem, but multiple inventions led to a number of highly
performant tools (CDCL, 2-watched literals. . .)

2. Specialized branch-and-bound approaches are starting to get leverage3

3. Tighter upper bounds in the number of facets for certain class of networks4: O(n
d

d!)

4. Neural networks we consider are highly connected, without loops: better search
heuristics may arise

3Branch and bound for piecewise linear neural network verification, Bunel et al., JMLR 2020
4Deep ReLU Networks Have Surprisingly Few Activation Patterns, Hanin et al., NeurIPS 2019

34 / 46

Neural networks are linear functions when restricted to a facet

Linear functions are more amenable for solvers

Enumerating facets and verifying properties on each may be scalable

DISCO Verification: Division of Input Space into COnvex polytopes for neural network
verification5

5Partitionnement en régions linéaires pour la vérification formelle de réseaux de neurones, Girard-Satabin,
Varasse et al., JFLA 2021

Neural networks are linear functions when restricted to a facet

Linear functions are more amenable for solvers

Enumerating facets and verifying properties on each may be scalable

DISCO Verification: Division of Input Space into COnvex polytopes for neural network
verification5

5Partitionnement en régions linéaires pour la vérification formelle de réseaux de neurones, Girard-Satabin,
Varasse et al., JFLA 2021

Neural networks are linear functions when restricted to a facet

Linear functions are more amenable for solvers

Enumerating facets and verifying properties on each may be scalable

DISCO Verification: Division of Input Space into COnvex polytopes for neural network
verification5

5Partitionnement en régions linéaires pour la vérification formelle de réseaux de neurones, Girard-Satabin,
Varasse et al., JFLA 2021

Neural networks are linear functions when restricted to a facet

Linear functions are more amenable for solvers

Enumerating facets and verifying properties on each may be scalable

DISCO Verification: Division of Input Space into COnvex polytopes for neural network
verification5

5Partitionnement en régions linéaires pour la vérification formelle de réseaux de neurones, Girard-Satabin,
Varasse et al., JFLA 2021

On trusting programs The specification problem The tooling problem Conclusion

How to enumerate facets?

First attempt was a geometric approach: from one facet, find the geometrical
neighbours. Vertex Enumeration is a well-researched problem

x2

x1
AB

C

D

E F

x2

x1
AB

C

D

E F ′

• high dimensional geometry (curse of
dimensionality)

• dependency between layers =⇒ no
vertex enumeration

• complexity for convex hull for one
facet6 is O(n

d/2

d/2!)

Implementation should follow another path

6The quickhull algorithm for convex hulls, Barber et al., ACM Transactions on Mathematical So�ware, 4
Dec. 1996

36 / 46

On trusting programs The specification problem The tooling problem Conclusion

How to enumerate facets?

First attempt was a geometric approach: from one facet, find the geometrical
neighbours. Vertex Enumeration is a well-researched problem

x2

x1
AB

C

D

E F

x2

x1
AB

C

D

E F ′

• high dimensional geometry (curse of
dimensionality)

• dependency between layers =⇒ no
vertex enumeration

• complexity for convex hull for one
facet6 is O(n

d/2

d/2!)

Implementation should follow another path

6The quickhull algorithm for convex hulls, Barber et al., ACM Transactions on Mathematical So�ware, 4
Dec. 1996

36 / 46

On trusting programs The specification problem The tooling problem Conclusion

How to enumerate facets?

First attempt was a geometric approach: from one facet, find the geometrical
neighbours. Vertex Enumeration is a well-researched problem

x2

x1
AB

C

D

E F

x2

x1
AB

C

D

E F ′

• high dimensional geometry (curse of
dimensionality)

• dependency between layers =⇒ no
vertex enumeration

• complexity for convex hull for one
facet6 is O(n

d/2

d/2!)

Implementation should follow another path
6The quickhull algorithm for convex hulls, Barber et al., ACM Transactions on Mathematical So�ware, 4

Dec. 1996
36 / 46

On trusting programs The specification problem The tooling problem Conclusion

DISCO by example

x1

x1 ∈ [0, 1]

x2x2 ∈ [0, 1]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

−1

1

1

1

1

1

−1

−0.5

−0.5

1.5

z11 = z12 = x1 + x2 > 0

y11 = z11

y12 = z12

z13 = −x1 + x2

z21 = y11 + y12 − y13

z22 = −0.5(y11 + y12) + 1.5y13

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 <0 y13 =0

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 ≥0 y22 =z22

Stacks describe facets and

linear operations

37 / 46

On trusting programs The specification problem The tooling problem Conclusion

DISCO by example

x1

x1 ∈ [0, 1]

x2x2 ∈ [0, 1]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

z11 = z12 = x1 + x2 > 0

y11 = z11

y12 = z12

z13 = −x1 + x2

z21 = y11 + y12 − y13

z22 = −0.5(y11 + y12) + 1.5y13

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 <0 y13 =0

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 ≥0 y22 =z22

Stacks describe facets and

linear operations

37 / 46

On trusting programs The specification problem The tooling problem Conclusion

DISCO by example

x1

x1 ∈ [0, 1]

x2x2 ∈ [0, 1]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

A

z11 = z12 = x1 + x2 > 0

y11 = z11

y12 = z12

z13 = −x1 + x2

z21 = y11 + y12 − y13

z22 = −0.5(y11 + y12) + 1.5y13

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 <0 y13 =0

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 ≥0 y22 =z22

Stacks describe facets and

linear operations

37 / 46

On trusting programs The specification problem The tooling problem Conclusion

DISCO by example

x1

x1 ∈ [0, 1]

x2x2 ∈ [0, 1]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

A

z11 = z12 = x1 + x2 > 0

y11 = z11

y12 = z12

z13 = −x1 + x2

z21 = y11 + y12 − y13

z22 = −0.5(y11 + y12) + 1.5y13

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 <0 y13 =0

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 ≥0 y22 =z22

Stacks describe facets and

linear operations

37 / 46

On trusting programs The specification problem The tooling problem Conclusion

DISCO by example

x1

x1 ∈ [0, 1]

x2x2 ∈ [0, 1]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

A

B

z11 = z12 = x1 + x2 > 0

y11 = z11

y12 = z12

z13 = −x1 + x2

z21 = y11 + y12 − y13

z22 = −0.5(y11 + y12) + 1.5y13

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 <0 y13 =0

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 ≥0 y22 =z22

Stacks describe facets and

linear operations

37 / 46

On trusting programs The specification problem The tooling problem Conclusion

DISCO by example

x1

x1 ∈ [0, 1]

x2x2 ∈ [0, 1]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

z11 = z12 = x1 + x2 > 0

y11 = z11

y12 = z12

z13 = −x1 + x2

z21 = y11 + y12 − y13

z22 = −0.5(y11 + y12) + 1.5y13

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 <0 y13 =0

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 ≥0 y22 =z22

Stacks describe facets and

linear operations

37 / 46

On trusting programs The specification problem The tooling problem Conclusion

DISCO by example

x1

x1 ∈ [0, 1]

x2x2 ∈ [0, 1]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

C

z11 = z12 = x1 + x2 > 0

y11 = z11

y12 = z12

z13 = −x1 + x2

z21 = y11 + y12 − y13

z22 = −0.5(y11 + y12) + 1.5y13

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 <0 y13 =0

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 ≥0 y22 =z22

Stacks describe facets and

linear operations

37 / 46

On trusting programs The specification problem The tooling problem Conclusion

DISCO by example

x1

x1 ∈ [0, 1]

x2x2 ∈ [0, 1]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

C

1

1

−1

z11 = z12 = x1 + x2 > 0

y11 = z11

y12 = z12

z13 = −x1 + x2

z21 = y11 + y12 − y13

z22 = −0.5(y11 + y12) + 1.5y13

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 <0 y13 =0

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 ≥0 y22 =z22

Stacks describe facets and

linear operations

37 / 46

On trusting programs The specification problem The tooling problem Conclusion

DISCO by example

x1

x1 ∈ [0, 1]

x2x2 ∈ [0, 1]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

C

1

1

−1

D

z11 = z12 = x1 + x2 > 0

y11 = z11

y12 = z12

z13 = −x1 + x2

z21 = y11 + y12 − y13

z22 = −0.5(y11 + y12) + 1.5y13

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 <0 y13 =0

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 ≥0 y22 =z22

Stacks describe facets and

linear operations

37 / 46

On trusting programs The specification problem The tooling problem Conclusion

DISCO by example

x1

x1 ∈ [0, 1]

x2x2 ∈ [0, 1]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

C

1

1

−1

−0.5

−0.5

1.5

D

z11 = z12 = x1 + x2 > 0

y11 = z11

y12 = z12

z13 = −x1 + x2

z21 = y11 + y12 − y13

z22 = −0.5(y11 + y12) + 1.5y13

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 <0 y13 =0

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 ≥0 y22 =z22

Stacks describe facets and

linear operations

37 / 46

On trusting programs The specification problem The tooling problem Conclusion

DISCO by example

x1

x1 ∈ [0, 1]

x2x2 ∈ [0, 1]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

C

1

1

−1

−0.5

−0.5

1.5

D

E

z11 = z12 = x1 + x2 > 0

y11 = z11

y12 = z12

z13 = −x1 + x2

z21 = y11 + y12 − y13

z22 = −0.5(y11 + y12) + 1.5y13

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 <0 y13 =0

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 ≥0 y22 =z22

Stacks describe facets and

linear operations

37 / 46

On trusting programs The specification problem The tooling problem Conclusion

DISCO by example

x1

x1 ∈ [0, 1]

x2x2 ∈ [0, 1]

z11

z12

z13

y11

y12

y13

z21

z22

y21

y22

1

1

1

1

−1

1

A

B

C

1

1

−1

−0.5

−0.5

1.5

D

E

z11 = z12 = x1 + x2 > 0

y11 = z11

y12 = z12

z13 = −x1 + x2

z21 = y11 + y12 − y13

z22 = −0.5(y11 + y12) + 1.5y13

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 <0 y13 =0

z21 ≥0 y21 =z21

z22 <0 y22 =0

z13 ≥0 y13 =z13

z21 ≥0 y21 =z21

z22 ≥0 y22 =z22

Stacks describe facets and

linear operations
37 / 46

On trusting programs The specification problem The tooling problem Conclusion

ISAIEH unveiled

ONNX_PARSER

ONNX protobuf parsing

NIER

operators definition

OUTS

LP format
SMTLIB2 format

PROBLEM

conversion to Z3 API
conversion to LP API

PROBLEM_PARSER
COUNT

DISCO algorithm

SOLVE

Z3, GUROBI, GLPK bindings

38 / 46

On trusting programs The specification problem The tooling problem Conclusion

Comparing to upper bounds

39 / 46

On trusting programs The specification problem The tooling problem Conclusion

Facet predominance

40 / 46

On trusting programs The specification problem The tooling problem Conclusion

A tradeo� between accuracy and number of facets

Maximum Margin Regularization7(MMR) does not have a significant impact
7

Provable Robustness of ReLU networks via Maximization of Linear Regions, Croce et al., AISTATS 2019

41 / 46

On trusting programs The specification problem The tooling problem Conclusion

A tradeo� between accuracy and number of facets

Maximum Margin Regularization7(MMR) does not have a significant impact
7

Provable Robustness of ReLU networks via Maximization of Linear Regions, Croce et al., AISTATS 2019

41 / 46

On trusting programs The specification problem The tooling problem Conclusion

Runtimes

Problem No split DISCO verification Facet enumeration
Total time

DISCO

multiplication 3 0.769s±0.0205 0.145s±0.012 2.69s±0.0596 2.83s
multiplication 4 5.43s±0.31 0.71s±0.0591 13.1s±0.859 13.8s
multiplication 5 0.0179s±0.00596 0.0771s±0.0077 0.699s±0.0124 0.776s
multiplication 6 0.0264s±0.00124 0.988s±0.0693 11.6s±0.186 12.6s
multiplication 7 0.0474s±0.00158 16.8s±0.831 227s±8.51 244s
multiplication 8 0.0484s±0.00551 1.65s±0.113 27.2s±0.576 28.8s

5× 5 perception 132s 23.7s 0.86s 24.56s

7× 7 perception
TIMEOUT
(>10000s)

1393s 15.38s 1406.38s

DISCO boost SMT solvers without changing their inner working (can be further
enhanced with heuristics)

42 / 46

On trusting programs The specification problem The tooling problem Conclusion

Related work

1. Marabou8 relies on SMT solving to perform branch and bound, but is still
specialized against ACAS benchmarks

2. ERAN9 is much faster than DISCO (less than 0.01s on perception), but can only
handle linear properties

3. Facets enumeration algorithm exists10, but not for formal verification

DISCO is slower, but more generic and solver agnostic

8Katz et al., 2019
9Vechev et al., 2018-2021

10Serra et al., 2018

43 / 46

Conclusion

On trusting programs The specification problem The tooling problem Conclusion

Scientific contributions

• Proposed a formalism to use simulators as perceptual inputs specification

• Implemented an ONNX to SMTLIB and LP compiler

• Built a problem splitting algorithm taking advantage of the piecewise linear nature
of relu networks

• Analyzed linear regions distribution and explored their practical use for formal
verification of deep neural networks

44 / 46

On trusting programs The specification problem The tooling problem Conclusion

Perspectives

1. Simulators for ISAIEH: taking into account simulators as machine learning
programs

2. Enhancing DISCO: counting facets directly is not the best approach; using
dependency analysis to reduce the number of solver calls

3. Engineering work to deal with more design possibilites (cambrian explosion of tools)

4. Expressing more complex properties is key: industrial adoption is the goal

45 / 46

On trusting programs The specification problem The tooling problem Conclusion

Contributions

Publications and prepublications

• DISCO Verification: Division of Input Space into COnvex polytopes for neural network verification, J. Girard-Satabin, A. Varasse, G. Charpiat, Z.
Chihani, M. Schoenauer, to be published

• Partitionnement en régions linéaires pour la vérification formelle de réseaux de neurones, J. Girard-Satabin, A. Varasse, G. Charpiat, Z. Chihani,
M. Schoenauer, JFLA 2021

• CAMUS: A Framework to Build Formal Specifications for Deep Perception Systems Using Simulators, J. Girard-Satabin, G. Charpiat, Z. Chihani,
M. Schoenauer, ECAI 2020

Dissemination

• Theory and practice of deep neural network verification, DFKI 2021, PFIA 2020, also as a M2 course at Master SETI

• Detection of behaviours using machine learning in the public space, La Quadrature du Net, outreach conference, 2021

• ForMaL DIGICOSME Spring School, 2019

So�ware

• Inter Standard AI Ecoding Hub (ISAIEH), LGPLv2, to be merged within the CAISAR platform developped at LSL

46 / 46

	On trusting programs
	The specification problem
	The tooling problem
	Conclusion

