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Reminder on deep learning



Deep neural networks : what they are

A neural network is a directed, acyclic, weighted, graph (within our verifications
problem)

Weights are learned through a learning procedure which we will not detail much. Key
point : constrained optimization problem to minimize a cost function (that’s where the
“deep” comes from)
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Deep neural networks : why do we use them

Theoretical justifications : For an activation function φ that is non-constant, continuous
and bounded, a neural network f (x) = φ(wT x + b) can approximate any continuous
function on compacts of Rn (Cybeko, 1989, universal approximation theorem, and
follow up work for width-bounded DNN Lu et al. 2017)

In practice, achieve good results on non-structured data, lot of tools to replicate and
deploy them, hype since the convergence between GPUs and vast availability of data

Deep learning verification techniques
24 septembre 2019

4 / 30



Deep neural networks : some things to keep in mind

• conceptually simple programs : no loops, no explicit conditionals, just a bunch of
additions and multiplications

• modern architectures have about billions of weights

• activations functions are important
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Deep neural networks : activations functions

• gives the DNN its expressivity
(non linear functions such as
XOR)

• usually occur after some linear
operations

• some popular ones : Sigmoid,
Rectified Linear Unit :
ReLU(x) = max(x , 0)
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Necessity to certify deep neural
networks and challenges



Adversarial examples (Szegedy et al. 2013)

Innocuous to humans, transferable between datasets, not systematic detection method
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Model theft (Tramèr et al. 2018)
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Dataset poisoning (Shafahi et al. 2018)
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Context : critical systems

A critical system is a system whose failure may cause physical harm, economical losses
or damage the environment
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How to bring confidence in software systems ?

Goal : guarantee that the system respects a safety specification

P : an autonomous car will not run over pedestrians
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Formal methods history

• Studied in the academics since 1930 (λ−calculus, Church, Turing)
• Different techniques : abstract interpretation (Cousot and Cousot 1977),

SAT/SMT (Davis and Putman 1960 ; Tinelli 2009), deductive verification
(Coquand 1989), etc.

• Used in industrial settings such as aerospace, automated transports, energy to
formally certify
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Key points

Work on domains D of inputs (global properties)

Answer is sound, formally guaranteed by mathematical logic
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Overapproximations

Abstract intepretation 1, symbolic execution

1. Cousot et Cousot, 1977, courtesy to Antoine Minet for the figure
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SAT/SMT calculus

Explicit enumeration of variables instanciations with various search strategies and
algorithms (backtracking, clause-driven learning,. . .) → exhaustive and sound but costly
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Question

What prevents us to use formal methods directly on learned programs ?
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Case study : a self-driving car perception unit

Dream property P : the autonomous car never run over pedestrians

no formal characterization of what a pedestrian is !

Lack of formal definition on inputs prevents from formulating interesting safety
properties
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It’s hard to use formal methods on deep learning

Classical software Machine learning
Explicit control flow Generated control flow

Explicit specifications
Data-driven specifications (lack of

generality)
Abstractions and well known concepts Very few abstractions and reusability
Documented and understood
vulnerabilites

Flaws without systematic
characterization

Some differences between classical software and machine learning
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Another difficulty : performance of verification tools

2 cases per ReLU node for the sol-
vers
Several million ReLU nodes →
2O(106) case splits

Combinatory explosion (if done naively)
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Take home message

1. A combinatorial problem

2. A specification problem
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Tricks of the trade



Local properties : adversarial robustness

For a given input x, a classification function f , an adversarial perturbation δ :

find delta
satisfying

classifier misclassification

such that perturbation stays below a certain threshold
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Local properties : adversarial robustness

For a given input x, a classification function f , an adversarial perturbation δ :

find delta
satisfying

f (x) 6= f (x + δ)

such that ‖δ‖p ≤ ε
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Global properties : ACAS-Xu

If the intruder is distant and is significantly
slower than the ownship, the score of a COC
advisory will always be below a certain fixed
threshold.
Bounds : ρ ≥ 55947.691, vown ≥
1145, vint ≤ 60

Critical system
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NN specifics functions (1)

SMT

de f i n e−fun r e l u ( I n t ) I n t ( i t e (>= x 0) x 0)
d e f i n e−fun max ( I n t I n t ) I n t (+ y r e l u ((− x y ) ) )

• ẑ = ReLu(z) = max(z , 0)

• u : upper bound, l : lower bound

• overapproximation :
ẑ ≥ 0, ẑ ≥ z ,−uz+(u−l)ẑ ≤ −ul
(Ehlers et al., 2017)

MILP

• ẑ = ReLu(z)

• ẑ ≤ zl(1− a) ∧ (ẑ ≥ z) ∧ (ẑ ≤ ua) ∧ (ẑ ≥ 0) ∧ (a ∈ (0, 1)) (Tjeng et al.,2019)
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NN specifics functions (2)

For abstract intepretation techniques (Vechev’s team), abstract transformers for ReLus,
Linear, Conv, Sigmoid, Tanh, MaxPool. . . (Mirman et al., 2018, Singh et al., 2019)
over the zonotope and hybrid zonotope domain (Goubault et Putot, 2008)

• For a matrix M : T#
f (h) = 〈M · hC ,M · hB ,M · hE 〉

Includes sum, scalar multiplication, convolutions. . .

• For ReLUs :
• if u ≤ 0, propagate 0
• if l ≥ 0, propagate the value
• if phase is not clear, add a noise symbol and propagate linear approximation (linear

transformer not accurate for very deep networks)
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Lower bound on adversarial robustness (Weng et al., 2018, Singh et al., 2018,
Boopathy et al., 2019)

• Basic idea :
propagation of
constraints in the
network

• Constraints :
A ∗W + B for IBM

• δ < ε for ZTH
Illustration of workflow from Mirman et al.,2018

Other approaches such as symbolic propagation (Wang et al. 2018, Yang et al. 2019)

Improve adversarial robustness on 100 samples from CIFAR-10 from 0 to 80%,
ε = 8/255, 3 hidden layers, convolutional network

Local properties
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Lazy evaluation of ReLUs (Katz et al. 2017, Katz et al. 2019)

Simplex with ReLUs
New class of variables : ReLUs pairs : b = ReLU(a)

If a ≥ 0 then a = b, else b = 0

1. start for an initial set of constraints S on variables
vi ∈ V

2. if vi violates a constraint si ∈ S, add a constraint sj on
vj , j 6= i that solve si (pivot)

3. if it is not possible to add sj , do a case split

4. repeat until convergence (SAT, UNSAT, TIMEOUT)

Exact verification of several global properties on a ACAS-Xu implementation
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Some search strategies (Tedrake et al. 2018, Wong et Kolter 2018, Singh et
al. 2018)

MILP : progressive computation of tighter bounds and presolving using basic domain
knowledge

Combine MILP with abstract intepretation to compute tighter bounds :
fp( u

u−l )z + fp(− ul
2(u−l)) + fp(− ul

2(u−l)) ∗ εnew (Singh et al.)

Search strategies : solve first neurons with high weight and high u − l

Alternatively, linear relaxations with LP (dual formulation)
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Some possible enhancements



This slide will be horrible

• Jointly contraint groups of ReLUs instead of linearising them independantly

• Start from backward reasoning then propagates again : bound refinement

• inputs dependancy, such as pixels correlation

• add another metric using the learning dataset

• use verification to output a class of counterexample

• new classification paradigm : activated ReLUs

• pruning networks to enhance verification

• ML can help too (active learning, learning to solve SMT Formula)
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New properties to verify ?

One big challenge unaddressed here : property formulation
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Questions ?

Questions ? :)
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